on solubility of groups with finitely many centralizers
Authors
abstract
for any group g, let c(g) denote the set of centralizers of g.we say that a group g has n centralizers (g is a cn-group) if |c(g)| = n.in this note, we prove that every finite cn-group with n ≤ 21 is soluble andthis estimate is sharp. moreover, we prove that every finite cn-group with|g| < 30n+1519 is non-nilpotent soluble. this result gives a partial answer to aconjecture raised by a. ashrafi in 2000
similar resources
On solubility of groups with finitely many centralizers
For any group G, let C(G) denote the set of centralizers of G.We say that a group G has n centralizers (G is a Cn-group) if |C(G)| = n.In this note, we prove that every finite Cn-group with n ≤ 21 is soluble andthis estimate is sharp. Moreover, we prove that every finite Cn-group with|G| < 30n+1519 is non-nilpotent soluble. This result gives a partial answer to aconjecture raised by A. Ashrafi in ...
full textGroups with Finitely Many Countable Models
We construct Abelian group with an extra structure whose first order theory has finitely many but more than one countable model.
full textGroups with Finitely Many Conjugacy Classes and Their Automorphisms
We combine classical methods of combinatorial group theory with the theory of small cancellations over relatively hyperbolic groups to construct finitely generated torsion-free groups that have only finitely many classes of conjugate elements. Moreover, we present several results concerning embeddings into such groups. As another application of these techniques, we prove that every countable gr...
full textSpaces with Finitely Many Non-trivial Homotopy Groups
It is well known that the homotopy category of connected CW-complexes X whose homotopy groups n;(X) are trivial for i> 1 is equivalent to the category of groups. One of the objects of this paper is to prove a similar equivalence for the connected CW-complexes X whose homotopy groups are trivial for i > n + 1 (where n is a fixed non-negative integer). For n = 1 the notion of crossed module inven...
full textProvability with finitely many variables
For every finite n ≥ 4 there is a logically valid sentence φn with the following properties: φn contains only 3 variables (each of which occurs many times); φn contains exactly one nonlogical binary relation symbol (no function symbols, no constants, and no equality symbol); φn has a proof in first-order logic with equality that contains exactly n variables, but no proof containing only n − 1 v...
full textRESIDUAL SOLUBILITY OF SF-GROUPS
Seifert Fibre Groups (SF-Gps) have been introduced and their first derived groups have been worked out in an earlier paper by the author [2,3]. Now we aim to prove that they are residually soluble and residually finite.
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 39
issue 3 2013
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023